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SUMMARY

Axisymmetric flow of a rotating stream is analyzed to determine condi-
tions which will allow an isolated eddy (vortex breakdown) to develop. Thée
eddy represents a fluid region totally confined by the external stream. The
effects of axial velocity, swirl distribution, and viscosity on eddy forma-
tion are systematically explored with the aid of numerical solutions of the
governing dynamic equations. These solutions also provide the structure of
the flow inside and ocutside of the eddy. The structure is displayed with
figures illustrating streamline contours for two inlet geometries. Ranges
of axial flow Reynolds number and swirl ratio are determined which lead to
confined eddies.

INTRODUCTION

Experiments have shown that swirling fluid streams can support internal,
closed eddies when the swirl is sufficiently large. Such a phenomenon offers
a possibility for fluid confinement without using solid boundaries. The ob-
Jective of the present study is to examine the feasibility of fluid confinement
by this mechanism.

Backflows in rotating fluids moving axially through diverging cross sec-
tions have been observed by several workers [5, 6, 8]. The flow exhibits a
stagnation point and reversed velocity on the axis, and is appropriately
called a "vortex breakdown'. The otherwise ordinary vortex flow breaks down
when the axial pressure gradient becomes large enough to drive secondary back-
flows.

The breakdown phenomenon was isolated from other flows by Harvey [10],
who employed a vortex tube. In his experiments, the breakdown appeared as a
small, bubble-like region of confined flow on the axis when the swirl exceeded
a critical value. The breakdown extended both upstream and downstream with an
increase in swirl until the whole length of the tube was filled with a central
core region with reversed axial velocity. As the size of the viscous core of
the upstream swirl flow was reduced the diameter of the breakdown bubble became
smaller. Harvey measured the swirl angle profile Jjust upstream of a vortex
breakdown bubble; this profile is used as input to parts of the present study.
The internal structure of the breakdown was not studied experimentally because
conventional probes disturb the breakdown and cause it to migrate to the probe.
The vortex breakdown phenomenon has also been observed in other flow configura-
tions [4, 11, 17, 18, 20].

Analytic studies of the vortex breakdown fall in two categories: those
that are primarily concerned with the cause and prediction of the phenomenon;
and those that are concerned with the structure of the breakdown flow. Re-
sults from the first category lead to reasonably accurate predictions of the
phenomenon provided the swirl flow upstream of the breakdown is known. The
analyses considered inviscid flow [1, 15, 23] or boundary layer-type flow [9].
In the second category are several studies of the structure of inviscid break-
downs [3, 7, 16]. Velocity perturbations were introduced to initiate the
eddy. Also, a numerical study allowing for viscous effects was undertaken by



Lavan, et al. [13] to obtain the structure of the breakdown for low Reynolds
number (Re) flows (Re based on radius less than 20).

The present study employs numerical solutions of the dynamic equations
to obtain the structure of the flow inside and outside the vortex breakdown
for a wide range of operating conditions. No approximations in different
regions of the flow are used; and no assumption that vortex breakdown is an
inviscid phenomenon is made. This study also attempts to determine the region,
on a map of Reynolds number versus the amount of swirl, where a vortex break-

dovn will form.

FORMULATION OF THE PROBLEM

Swirling flows within a straight and circular streamtube of constant
cross—-sectional area are examined. A cylindrical coordinate system (x, r, 6)
is appropriate and is sketched in figure 1. The streamtube radius is ro. The
velocity components are denoted by u, v, and w for the axial, radial, and azi-
muthal directions. Two configurations for the entering flow are considered as
shown in figure 2. 1In one, fluid enters axially and in the other, radially.
Viscous flows are examined for both inlets, and inviscid flows are alsoc con-
sidered for the axial inlet. Throughout, the flows are assumed to be
axisymmetric and incompressible.

Viscous Flow Equations

The fluid motion is governed by three time dependent momentum equations
and a mass continuity equation. By multiplying the 6-momentum equation by r,
an equation for the transport of circulation T is obtained. Circulation may
be identified with angular momentum and is given by T = rw. The x- and
r-momentum equations can be cross-differentiated to eliminate pressure, and
an equation for the transport of aximuthal vorticity Q results.

Appropriate scaling parameters are the tube radius, r,, the mean axial
velocity in the tube, U, and an angular velocity w,. The latter will typi-
cally be taken as the angular velocity of the tube wall at the inlet. Denoting
dimensional variables with primes, corresponding nondimensional variables

become:

= U 4 = X =
t = ro t', x = ro , T = ro
u' _ v A
T T (1)
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The resulting nondimensional equations are:

%%+ ag;‘I‘) . % 3(;¥T) - R_lé [,g;_g_ 2 (i gz)] (2a)
L 0T YT
R =
TR =

Equation (2c) is provided by the definition of vorticity and the first two
of equations (2d) by the definition of stream function.

The nondimensional transport equations for the circulation T and the
azimuthal vorticity @ introduce two independent parameters into the problem,
the Reynolds number (Re) and the swirl ratio (I') defined as

UrO r wo
Re=T and I = = . (3)

The Reynolds number is the ratio of inertial forces to viscous forces; the
swirl ratio is the ratio of the characteristic rotational speed to the char-
acteristic axial speed. It is apparent from equations (2) that the essential
dependent variables governing the viscous, axisymmetric flow of an incom-
pressible fluid are T, @ and . Velocities can be expressed in terms of ¥
and T through equations (2d). The dependent variables are functions of the
coordinates x and r, time t, and the parameters Re and T.

Inviscid Flow Equation

In the absence of viscous effects, circulation T and vorticity Q are
simply convected along with the flow. Thus, only the stream function rela-
tion (2c) need be retained. For the steady flow of an inviscid, rotational
fluid, the stream function equation becomes

13% , 3 29 4T _ 2 4P
'r[ra—xg"‘ar (rar)]'erw "y (4)

t+ Except for the source terms and the nondimensional parameters, these
equations are similar to those used by Torrance [24].

t+ See Squire [22] for derivation.



where all variables are dimensionless and P is the dimensionless total pres-
sure (P = P'/pU%). 1In contrast to the previous section, only one equation
is now involved. The dependent variable is ¥, and as the total derivatives
indicate, T and P are functions only of ¢. Prescriptions for the T - ¢ and
P - § relations are required and come from the boundary conditions.

Initial Date and Boundary Conditions

Viscous flow. - The circulation and vorticity transport equations (2a)
and (2b) are written in time dependent form. Such a coupled system (they
are coupled through the circulation term in equation 2b) is more readily
solved numerically when posed as an initial-value rather than as a
boundary-value (or time steady) problem. In addition, the time dependent
form allows solutions which mey be hydrodynamically unsteady. Only time
steady vortex breakdowns were observed in the present study, but there was
no reason to anticipate this in advance. 1Initial conditions in the stream-
tube were taken to be either: a uniform, parallel flow with an arbitrary
swirl distribution; or the steady Tlow from another run which used different
values of Re and I'. Final results were independent of which initial condi-
tion was used.

Boundary conditions on the streamtube must be prescribed and are essen-
tial for establishing a confined eddy. The two flow configurations considered
are illustrated in figure 2; the axial inlet (figure 2a) will be discussed
first. Fluid enters the tube with a uniform axial velocity (u) and a pre-
seribed radial distribution of swirl velocity (w). The swirl velocity profile
is taken to be of exponential vortex form:

w=1%(1 _ B (5)

vhere B denotes a constant. Such a distribution 1s a good description of a
viscous vortex, and was verified by Harvey [10] to exist upstream of a vortex
breakdown bubble.? Since a number of experimental configurations could be
expected to generate such a profile, it appears to be a realistic choice for
the inlet stream.

The profile given by equation (5) is shown in figure 3{a) for values of
B = 9 and 14k. These are the values employed in the present study; with the
latter corresponding to Harvey's experiments. The vortex displays solid body
rotation near the axis (w = r) and free vortex behavior far from the axis
(w « r=1). The exvonential vortex is displayed in terms of the dependent
variables in figure 3(b) as circulation T versus ¢. For uniform flow at the
inlet, y = r2/2. A free vortex corresponds to T = 1, and it is apparent that
the viscous core is larger for B = 8 than for B = 1L,

t Harvey actually measured a swirl angle distribution. The swirl angle ¢ is
related to the dimensionless velocities by ¢ = tan™t (I'w/u). If the axial
velocity is constant with r, equation (5) can be used to obtain the swirl
angle distribution.



At the wall of the streamtube (figure 2 a ) boundary conditions were
selected so as to isolate the flow dynamics as much as possible from the in-
fluence of containing walls. In particular, a zero axial shear surface is
employed to eliminate the effect of developing wall boundary layers. Also,
the confining streamtube is oresumed to rotate at a constant speed w = 1.

This matches the inlet condition, so that a fluid particle at r = 1 neither
gains or loses angular momentum as it moves down the streamtube (i.e., T = 1).
These conditions simulate flow within the entrance of a real tube (rotating
or stationary) as long as the wall boundary layers are thin and the core flow
at entrance matches the inlet profile of this study.

The remaining boundary conditions are common to both inlet configura-
tions. The axis (r = 0) is a line of zero shear and zero angular momentum
(@ =T = 0); the stream function is assigned the value ¢y = 0. The total
volume rate of flow through the streamtube is then equal to n. The volume
rate of flow per radian in the 6-direction becomes ¢ = n/27 = 0.5, and this
is the Y-value assigned to r = 1. The tube is assumed to be long enough so
that axial variations at the tube exit are small. Accordingly all dependent
variables employed the condition 3/9x = O there. Justification for this con-
dition follows from the boundary layer equations which are expected to be
valid far downstream. These equations neglect axial diffusion and require
only one boundary condition in the x-direction, that at the inlet. Thus the
boundary condition at the end of the tube plays the role of a "weak" condi-
tion (not essential) and its actual form (3/9x = 0) is not expected to have
an important effect on the flow.

Boundary conditions on T, @ and ¢ for the axial inlet may be summarized
as follows:

r =0, all x T=Q=¢ =20

r =1, all x T=1, =0, ¢ =0.5

x =0, allr T=1-‘Br2,n=o,w=§2 o)
X = tube exit, all r %g-= g%—= §£'= 0

For the radial inlet (figure 2 b ), fluid enters the tube along r =1
between x = 0 and 1 with a uniform radial velocity v = - 0.5 and a uniform
swirl velocity w = 1. Downstream, the tube rotates at angular velocity w =1
and wall boundary layers are allowed to develop in the axial direction. That
is, wall shear is included. This arrangement should simulate physical experi-
ments more closely than the axial inlet because the swirl profile is allowed
to develop naturally. The inlet could be achieved with a porous ring on the
tube or by a radial swirl vane entrance as in the experiments of Harvey.

Boundary conditions for the radial inlet are as follows:

r=0, allx T=2=9=0
(7)

r=1, 0<x<1.0 T=1,Q=0,¢=§
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r=1, x>1.0 T 0.5
x=0, allr %§-= , =0, ¢¥=0 (1)
X = tube exit, all r 22-= §2,= 3£-= 0.

Conditions at x = 0 correspond to a zero-shear plane of symmetry, which can
be realized in practice by constructing a mirror-image flow for x < 0 rotat-
ing in the same sense. Secondary flows arising from a rigid wall at x = 0
are thereby avoided.T An examination of vortex behavior independent of such
side effects was sought. Note that vorticity at the wall cannot be expressed
explicitly, but can be determined from stream function boundary conditions

in the course of the numerical solutions, as will be explained later.

Inviscid flow. - For an inviscid fluid, the governing equation (k4) re-
guires two boundary conditions on ¢ for each of the x- or r-directions, as
well as relationships for total pressure P and circulation T in terms of y.
The latter relationships could be determined for the axial inlet but not for
the radial inlet, and the inviscid celculations were thus restricted to the
axial inlet configuration. Appropriate Y-boundary conditions are:

r =0, all x v =0
r=1, all x Yy = 0.5
(8)
x=0, allr ¥ = ri/f2
X = tube exit, all r %%-= 0 .

Circulation T and total pressure P are convected downstream without
change from the inlet along streamlines. Therefore, conditions at the inlet
may be employed to evaluate T and P. For the axial inlet, the radial momen-
tum balance requires

9p _ o I2
or - (9)

where all variables are dimensionless and p is the static pressure
(p = p'/oU2). The latter is related to the total pressure P by

P=p+ %-(u2 + v2 + I'2y2) . (10)
+ Secondary flows in jet-driven vortex tubes have been observed by Rosenzweig,

Lewellen and Ross [19] in which the end-wall boundary layers are primarily
responsible for the strong axial flows existing in the vortex.



This can be rewritten as

dP _ 3p dr , 1 2 d(v?)

dy or dy 2 dy
(11)
= 2 L q 4T
=T 2% T av

using T = wr, ¥ = r2/2, and equation (9). The right side of the governing
equation (4) becomes

ar

av (12)

2
(1 - %I)FZ T

and only a T - § relation remains to be specified. This is taken to be the
exponential vortex which reduces (using ¢ = r2/2 at the inlet) to

e—2B¢

T=1- for ¢ > O . (13a)

Fluid eddies with ¢ < 0 could not originate at the inlet in a steady flow

(¢ > 0 there), but a definition of their T-values must be prescribed in case
an eddy develops. For convenience, such fluid elements are assigned the
values

(1 - forwc<o. (13b)

=]
1]

The rotational sense is opposite to that in the inlet. It is worth noting
that the solutions are unaffected by the rotational sense of the eddies rela-
tive to the inlet since only the product T dT/dy appears in relation (12).

NUMERICAL METHOD

Grid System

Numerical methods, suitable for digital computation, are developed which
permit solutions of the flow equations. For most of the calculations, the
flow field is partitioned into a uniform, rectangular grid. The x and r loca-
tion of any grid point in terms of its i and J coordinates is given by
x=(i~-1)Ax and r = (J - 1)Ar where Ax and Ar are the grid dimensions and
i and j are the integers 1, 2, 3, etc. The value of a quantity like circu-
lation or azimuthal vorticity at a grid point is the average of the quantity
over a small rectangle with dimensions Ax by Ar centered about the grid point.
At any instant in time this grid point quantity is constant throughout a ring
of fluid with radius r and cross-sectional dimensions Ax by Ar. The trans-
port of a quantity from grid point to grid point is approximated by a finite
difference scheme.



For the axial inlet, a grid size of 22 mesh points in the x-direction
and 11 mesh points in the r-direction (22 by 11) was used. The streamtube
was 5.25 dimensionless units long and 1.00 units in radius, so that 4x = 0.25
and Ar = 0.1. For the radial inlet, a grid size of 12 mesh points in the
x-direction and 6 mesh points in the r-direction (12 by 6) was used. The
streamtube was 5.50 units long and 1.00 units in radius, so that Ax = 0.50
and Ar = 0.2, A finer grid, 22 by 11, and a variable mesh grid with a trans-
formation for an infinitely long tube were also used for a few solutions of the
radial inlet configuration.

Finite Difference Scheme for the Viscous Flow Equations

The set of viscous flow equations (2a-d) that govern the fluid confine-
ment problem are solved by the method of finite differences. All linear space
derivatives are approximated by three point central differences. The non-
linear space derivatives of the form 3(uF)/3x are approximated by special
three point noncentral differences. For the grid point (i,J) the method is
as follows:

u, . o+ ou u, +ou,
RACLDE N S ¥ NN W RS S 9 R ¥, BT (13)
Ix 1,3 Ax 2 i,J 2 i-1,]
Zzgn the coefficients (ui,j + ui+l,j)/2 and (ui—l,J + ui,j)/2 are positive
u. + u, u. + u.
1T IS Wk 9% Ml L0 DY L SH NG 77 HS S (k)
ax ) ; Ax 2 i+l,J 2 i,

when the coefficients are negative. For one coefficient positive and one co-
efficient negative the appropriate term from equation (13) and the appro-
priate term from equation (l4) are used. The difference scheme is constructed
so as to fully satisfy mass, circulation, and vorticity conservation within
the grid system. Additional details and discussions of the stability, con~
vergence, and conservation properties are provided by Torrance [2k4].

The calculation proceeds from a known flow configuration of T,  and ¥
at time t (which may be the initial data) by explicitly extrapolating to time
level t' = t + At the T and  fields at all interior points. All space dif-
ferences are evaluated at time t. A forward difference approximation is used
for the time derivative. Circulation is advanced first using a finite dif-
ference approximation of equation (2a),



7= At | (sl T + [ui;l’ir+ 1 1p
i3 Re{Ax)4'71+1,} Ax Re(Ax)<"7i-1,)

1 1, 2r - 2 2
+ [= - —=2d - -
[At AX Ar vi,j Re(Ax)4 Re(Ar)z]T 3 (15)
1_91 1__Al.. (l+—£
+ [—T]T + [—2 7 + =25t .
Re(Ar)4' i, j+1 Ar i,j-1 * Re(ar) ij-1
Equatlon (15) is written for the case when the mean velocities (u 5= (ui 3 +
’ s

+l,J)/2) are positive.

The azimuthal vorticity is next advanced using a finite difference ap-
proximation to equation (2b),

u
! 1 i-1,3 1
= +
@y, = 8t [:[Re(Ax)z]Qi+l,J * =5 Re(an) 2% 1, 3
epr M Vigo_2 1 1 Io,
At Ax Ar Re(ax)? Ar Ar Re(AF)2
1+= 1-
2r 2r
Ar — Ar (lb)
1+ — v, 1l - —
+ [ r l ]Q [ l,i‘l + r l ]Q
Ar Re(Ar)<'i,j+l r Ar Re(ar)< i, j-1
1+ — 1 - ==
2r 2r
1 ]
T Ti+l,j i-1,43
+ 2 2 Py
er 240x ]

Again, this is written for the case when the mean velocities are positive.
Note that the last term is evaluated at the new time level and is constant
over the time step.

In order to bring ¢ up-to-date with the new values of T and ©, equation
(2¢) must be solved. This is accomplished by approximating it with finite
differences, and solving the resulting set of simultanecus equations by the
iterative technique of optimized successive over-relaxation. A new iterate
at level (s + 1) is determined from values at level (s) using



(s+1)

i3 = (1 - wb)w

1,
v .

+ 1 1 {2 i j
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a2r 2r

! ¢(s) + 1 (s+1) , 1 (s)
(Ax) i+l,J (Ax) i-1,J (l + A_r)(Ar)Z i,j+l
ar
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An optimum relaxation factor, wy, can be computed for a given grid size; the
details are given by Smith [21]. For the grids used in this study, a maximum
of fifteen iterations (always sweeping in the same direction) was used. Less
than fifteen iterations were used if the ratio of the maximum val%%)of

!¢“}23 - w{S)l for all the grid points to the maximum value of lwi,Jl in the

field"is less than 5 x 107°.

Certain of the boundary conditions must still be considered. The re-
guirement of 3/3x = 0 at the tube exit is satisfied by adding an extra column
of grid points with field variables identical to the last computed column of
grid points. The circulation at the plane of symmetry (radial inlet) is com-
puted from a finite difference approximation of equation (2a) which incor-
porates the symmetry conditions. The wall vorticity (radial inlet) is
determined from the up-dated stream function field as follows: At the wall,
the stream function is constant and the axial velocity u is zero (no-slip
condition). The vorticity equation therefore reduces to 2 = - 32y/ar2. A
Taylor series expansion for { leads to a first order approximation of the
wall vorticity,

2(y, - v )
Q = - —2t 0 (18)
° (Ar)2

where the subscripts 0 and 1 denote the wall and one grid point away from
the wall, respectively.

The velocities u, v, and w are determined from equations (2a) using
three point central difference approximations for the derivatives. All field
variables are now known and current at time t' = t + At. Before repeating the
numerical procedure for the next time advancement, a value for the time step
At is determined from stability considerations.

The numerical method is stable (in the sense of Lax and Richtmyer [i4])

10



if At is suitably restricted. DNo constraints are imposed on the spatial mesh
increments. Stability requires that the sum of the absolute values of the
coefficients of equations (15) and (16) be bounded by unity. Such a bound
exists if all the coefficients are positive, and this can be guaranteed if
At satisfies an inequality of the following form at all interior grid points:

u v, -1
i,] ary Vig 2 2 1
bt < [ e t e W Rzt =) Re(Ar)Z] . (19)
: 2r

Suitable permutations of the velocity are employed in this expression if the
mean velocities are negative, or a mixture of positive and negative. Because
the difference equations are consistent with the governing partial differen-
tial equations, Lax and Richtmyer stability implies that the numerical solu-
tions will converge to the exact solution of the differential equations as
At, Ax and Ar tend to zero.

The size of the time step given by inequality (19) decreases with de-
creasing Reynolds number (Re). Results indicate that flow transients also
take more time, t, as Re increases. Computation of a steady state flow for
the axial inlet at Re = 100, 200 and 1000 respectively required approximately
300, 700 and 2000 time advancements. Since the latter is directly propor-
tional to the amount of computer time required, computations were restricted
to Re < 1000 for the axial inlet. ©Similar results were observed for the
radial inlet, but because a coarser grid was generally employed, Re was re-~
stricted to < 3000. Of course, quantitative results at very high Re may
require refining the spatial grids beyond those of the present study.

Finite Difference Scheme for the Inviscid Flow Equation

The finite difference approximation of the inviscid flow equation is
identical to equation (17) except that ra', 3 is replaced by
b

r2 aT
(1 - o jre (T ol , (20)

i, 1,

and a Jacobi advancement is used (wb = 1 and all iteration levels on the
right hand side of equation (17) become s). For stability of the inviscid
fluid calculations it was necessary to use 75 and 50 percent of the Jacobi
advancement of the stream function field for B = 8 and B = 14. The initial
field was usually taken to be a uniform, swirling flow with an axial pertur-
bation. The number of yY~iterations required depended upon whether or not
the final field had a vortex breakdown. With a breakdown, about 1000 itera-
tions were required; without a breakdown, about 200.

11



RESULTS

A steady, cornfined eddy of fiuld that exhibits flow reversal along the
axis will be called a vortex breakdown. It may be helpful at this point to
examine figures 4, 5, 6, and 7 which show streamline fields containing vortex
breakdowns. The location of these streamlines was determined by cross plot-
ting the computed values at the mesh points. In each of the streamline plots
the centerline of the cylindrical streamtube is shown on the bottom; the en-
trance to the streamtube is to the left and the exit to the right. The
abscissa is the axial coordinate x, and the ordinate is the radial coordinate
r.

This investigation covers a range of Reynolds numbers from 50 to infinity
(the inviscid case) for the axial inlet and from 10 to 3000 for the radial in-
let. For the axial inlet, the results are believed to have quantitative
validity, and yield the general flow field as well as the shape, size, strength,
and location of a vortex breakdown if it appears. Results for the inviscid
fluid are compared to the results for the viscous fluid when the Reynolds num-
ber is large. For the radial inlet, only qualitative trends about the forma-
tion of the vortex breakdown can be inferred, for reasons to be discussed later.

Axial Inlet-Viscous Flow

The development of a vortex brsakdown with variations in Reynolds number
or swirl ratio may be conveniently examined with the aid of figures 4 and 5.
Results pertain to an exponential swirl distribution in the axial inlet with
B = 8. All graphs portray the steady state streamline fields. The stream-
lines represent the intersection of an axial plane with the various stream-
tubes given by ¢ = constant. The actual streamlines are helical paths traced
out on these tubes.

Results shown in these figures (and throughout this report) were obtained
by advancing the transient solution procedure in time from some initial field
until steady flows were achieved. In all cases, the transient evolution was
smooth. Vortex breakdowns apneared or disappeared quite naturally, without
oscillations or random motions of the breakdown or supporting stream. Multiple
breakdowns within the flow did not appear. Conseguently, primary attention
here will be directed to the final, steady flows.

Figure L illustrates the breakdown development with increasing swirl at
a fixed Reynolds number, Re = 100. In figure 4(a) the amount of swirl,
I' = 0.752, is not enough to cause a stagnation point along the axis. However,
the respective diffluence and confluence of the streamlines suggest that an
eddy may be forming. As the swirl is increased to I' = 0.833, figure L4(Db),
an eddy does indeed form within the flow. This eddy is closed and has a for-
ward and rearward stagnation point. The size and shape of the vortex break-
down is defined by the streamline with value zero. As the swirl ratio is
increased further to I' = 0.909, figure 4{(c), the vortex breakdown becomes
larger in size and stronger. The forward stagnation point moves forward while
the rearward stagnation point moves rearward. The location of the maximum
absolute value of stream function inside the vortex breakdown migrates forward

12



slishtly, and its magnitude increases from 1.0 x lO_3 to 4.7 x 10'3. Nearly
five times as much fluid is now undergoing reversed flow in figure L(c) as
compared to figure L(b).

As the swirl ratio is increased further to T' = 1.25, figure L4{(d), the
vortex breakdown grows distinctively larger in the radial direction and ex-
tends out the tube in the axial direction. For a very large swirl ratio,

I = 10, figure L{e) shows that the breakdown almost completely fills the
streamtube. Field variables near the inlet change rapidly in the x-direction
for ' = 1.25 and 10, suggesting that a real breakdown would tend to migrate
upstream and alter the upstream boundary conditions.

Figure 5 illustrates the breakdown development with increasing Reynolds
number. The swirl ratio is held constant, ' = 0.833. The trends in figure 5
are strikingly similar to those in figure 4. For Re = 50, no breakdown appears
but the streamlines suggest that one is imminent. As the Reynolds number is
increased to 100 and to 200, a vortex breakdown develops and increases in size
and strength. This increase of Reynolds number moves the location of the maxi-
mum absolute value of stream function inside the vortex breakdown upstream and
it increases in magnitude from 1.0 x 10-3 to 3.5 x 10~3. TFor Re = 500 the
breakdown extends out the tube.

Figure 6 portrays a breakdown at a higher Reynolds number, Re = 1000,
also with B = 8. Clearly, the breakdown is now greatly elongated and very
slim. The swirl ratio for this breakdown (T = 0.71k) is very near that for
which a breakdown first avpears (I' = 0.697). Calculations suggest that a
breakdown near I' = 0.697 will also extend out the tube at this Reynolds number.
The flow in figure 6 is similar to the bore flows observed by Benjamin
and Barnard [2], in which the main flow is water but the cavity is filled with
air.

Figure 7 illustrates the breakdown development with increasing swirl for
a different inlet swirl distribution, B = 1lhk. 1In this figure, the Reynolds
number is held fixed at Re = 100. The viscous core becomes smaller as B is
increased, and for vortex breakdowns of similar strength, those for B = 14
are more slender than those for B = 8. Figures L(b) and 7(b) both have a
treakdown strength of ¢ = - 1.0 x 10“3, but the maximum radius of the break-
down for B = 8 is 0.26 units while that for B = 1k is 0.22 units. Similarly,
the breakdowns shown in Figures L(c) and T7(c) are of nearly the same strength,
tut the maximum radius of the breakdown for B = 8 is 0.34 while that for B = 1L
is 0.30.

For all of the streamline plots except those showing a breakdown going
out the end of the tube, or nearly going out, the streamlines near the end of
the tube change very little in the x-direction. Thus, the tube is long enough
so that the boundary condition 3/8x = 0 is satisfied. When the breakdown ex-
tends out the tube, this condition is not nearly so well satisfied.

By selecting a value of Re and varying T or by selecting a value of [ and
varying Re, it is nossible to determine a critical value, T'. or Re,, at which
a vortex breakdown will appear. The locus of the points thus determined sep-
arates a region of flows with breakdowns from a region without breakdowns,
and will be called the incipient breakdown line. Such a line is shown in
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The amount of swirl required for an incipient breakdown decreases as the
Reynolds number increases and an asymptotic value of swirl ratio is approached
for large Reynolds number.

The vortex breakdowns in the radial inlet streamtube are similar in shape
to those for the axial inlet. As either the swirl ratio or the Reynolds num-
ber is increased, the forward stagnation point moves upstream and the rearward
stagnation point moves downstream. With increasing swirl, the location of the
maximum absolute value of stream function inside the vortex breakdown moves
upstream, but with increasing Reynolds number, the location moves downstreanm.
The latter result is contrary to that observed with the axial inlet.

Near the incipient breakdown condition a vortex breakdown forms just
downstream of the inlet (x > 1) as a small isolated eddy. As the forward stag-
nation point migrates upstream with increasing I' or Re, the question naturally
arises of whether or not it will reach x = 0. Since the boundary conditions
applied at x = 0 postulate a mirror-image flow for x < 0, migration of the
eddy up to X = 0 corresponds to the merging of separate eddies (one for x > 0
and one for x < 0) to form a single eddy symmetric about x = 0.

Since the 12 x 6 grid could not adequately answer the aforementioned
question, a sequence of runs was initiated using successively refined grids
for Re = 100, I' = 1.0. Results are shown in figure 1li. Figure 1lk(a) corre-
sponds to the 12 x 6 grid, figure 14(b) to a 22 x 11 grid, and figure 1lh(c)
to & 22 x 11 variable mesh grid in an infinitely long tube. The latter was
achieved by introducing a coordinate transformation and is described in an
appendix to a thesis by Kopecky [12]. Dashed streamlines indicate regions
where interpolation is uncertain.

The eddy is basically similar for all three grids, and extends up to and
includes the first computable mesh point (for figures 1k(a), (b) and (c) this
was X = 0.5, r = 0.2; x = 0.25, r = 0.1; and x = 0.25, r = 0.065). It appears
that the breakdown does actually merge with its mirror-image counterpart.

This has not been observed in the experiments cited. Typically, a contoured
wall at x = 0 with a spiked centerbody along the axis was employed. This wall
appears to be important for setting up the swirl profile in the tube, but its
inclusion in a numerical simulation is not yet possible. Thus, the boundary
condition along x = 0 fails to fully simulate experiments, but it does sug-
gest a new way in which an eddy may be confined. By injecting fluid through
a radial inlet in the middle of a long tube it may be possible to fix the
location of a vortex breakdown to x = 0, r = 0. Further work is needed to
determine if the breakdown will remain centered as it grows axially with in-
creases in either Re or T.

Some observations on an optimum grid size may be deduced from figure 1k,
Results are all qualitatively very similar. Quantitatively, the grid of fig-
ure 1Lk(b) appears to adequately describe the structure and magnitude of the
breakdown circulation. The bulge near x = 1 does not appear in the other
flows because they employ somewhat coarser axial grids in that region. [The
grid of figure 1L{(b) was employed for all of the axial inlet calculations.
Its adequacy for that geometry was verified by a run using Re = 50, T' = 1 and
a 42 x 21 grid. Results differed from the 22 x 11 grid generally by only a
few percent.] It appears that the 12 x 6 grid of figure 1k(a), coupled with
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the singular nature of the breakdown itself, limits us to a qualitative dis-
cussion. Extensive streamline fields for the grid were computed but are not
presented.

The fcregoing observations are supported by an additional grid refine-
ment for conditions very near the onset of a breakdown. A 12 x 6 grid at
Re = 100, I' = 0.714 yielded a flow with a diffluence and confluence of strean-
lines that suggested a breakdown was imminent, but it was not present. A grid
of 22 x 11, however, yielded a weak vortex breakdown for these conditions that
extended along the axis in the inlet region. Such behavior is due to trunca-
tion errors, which cause the numerical solutions to correspond to values of
Re and I' which may be shifted slightly from the input values. For conditions
near the eritical Iy, this can lead to the results just noted since the break-
down develops rapidly with I', as shown in figure 10.

CONCLUSIONS

Numerical solutions, which are exact in the sense that no terms in the
governing differential equations were neglected, have been obtained for iso-
lated eddies confined in a rotating stream. Two types of inlets to a straight
and circular stream tube of constant cross-sectional area were investigated
(see figure 2).

Results for the axial inlet yield quantitative information on the general
flow field as well as the detailed structure and location of a vortex break-
down (if it apvears). The most important findings may be summarized as
follows:

{a) The development or initiation of a vortex breakdown with variations
in Re or I' is indicated by a sequence of streamline plots (see, for
instance, figures 4 and 5).

(v) The incipient breakdown conditions (figure 8) reveal that a critical
swirl ratio is required to achieve a vortex breakdown. This ratio
decreases with increasing Re and attains an asymptotic value.

{(c) There appears to be no hysterisis mechanism controlling the vortex
breakdown in a viscous fluid, i.e., the breakdown appears and dis-
appears for the same value of T.

(d) The breakdown grows in size in both the axial and radial direction
when either Re or I is increased.

(e) The location of the maximum absolute value of stream function in-
side the vortex breakdown migrates forward slightly and increases
in strength for an increase in either Re or I'. The upstream migra-
tion of the breakdown is limited by the imposed inlet conditions.

(f) The breakdown strength is very sensitive to changes in the amount
of swirl near the incipient or critical value (see figure 10).
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(g) For the same strength vortex breakdowns at a given Re, the smaller
the viscous core at the tube axis the slimmer the breakdown.

(h) A comparison between the inviscid flow calculations and the vis-.
cous flow calculations for large Reynolds number (Re > 1000) indi-
cates that viscosity may be important for closing the vortex
breakdown (providing a rear stagnation point) and confining the
breakdown to within a finite tube length.

Some of the above observations are reinforced by Harvey's work. Related
to {b), he found that a steady vortex breakdown forms above some critical
value of swirl angle. His experiments were performed at Re T L4300 with an
inlet swirl profile described by B = 14. The corresponding critical swirl
ratic is [ = 0.49, which compares quite favorably with the asymptotes given
in figure 3. Related to (c), Harvey found that the breakdown can occur as a
smooth and reversible transition. Related to (d), he found that with an in-
crease in swirl the breakdown grows axially in both the upstream and downstream
directions until, eventually, the whole length of the streamtube is filled with
a central core region with axial velocity reversal. And related to (g) he
found that the smaller the viscous core at the tube centerline, the smaller
the diameter of the breakdown bubble. Although the latter comparisons are
necessarily qualitative, the observations of Harvey generally support the re-
sults of this investigation.

For fluid confinement purposes it is necessary that the vortex breakdown
have a rear stagnation point. This study indicates that for a straight and
circular streamtube of constant cross-sectional area a rear stagnation point
does not exist for Reynolds number large, i.e., as the fluid becomes inviscid.
The photographs by Harvey [10] and Cassidy and Falvey [4] of vortex breakdowns
in this type of streamtube for large Reynolds numbers (Re > 4000) also do not
indicate a rear stagnation point. Instead, the tail of the vortex breakdown
appears to be an elongated helical vortex that precesses unsteadily about the
tube centerline. Thus, as conclusion (h) states, viscosity and/or tube length
may be important for closing the breakdown.

For the radial inlet the calculations indicate that the breakdown wants
to form in the inlet. Thus, it may be possible to confine a vortex break-
down to one location by having the fluid enter radially through a porous
section of rotating tube and exit axially in opposite directions.

The above overall study indicates that the vortex breakdown phenomenon
is amenable to detailed observation when the method of finite differences is
used to solve the governing differential equations cast in terms of circula-
tion, azimuthal vorticity, and stream function. The approach to the problem
of fluid confinement by means of vortex breakdown could use the techniques
outlined herein along with any experimental measurements of the breakdown's
flow field that can be obtained. It may then be possible to incorporate the
vortex breakdown phenomenon in a design for high temperature energy productilon.
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APPENDIX - SYMBOLS

t Time

X,r,8 Coordinates in the axial, radial, and azimuthal directions (figure 1)

U,V ,W Velocity components in the axial, radial, and azimuthal directions
(figure 1)

T Circulation or angular momentum (= rw)

Q Azimuthal vorticity component (equation 2c)

" Stream function (equations 24)

p Density

P Static pressure

P Total pressure (equation 10)

v Kinematic viscosity

T, Tube radius

Weo Angular velocity of tube wall at the inlet

9] Average axial velocity

Re Reynolds number (= Uro/v)

r Swirl ratio (= r w /U)

Re, Critical Re required to initiate a breakdown at constant T

Ta Critical T required to initiate a breakdown at constant Re

s Swirl angle (= tan~1 [Iw/ul)

B Adjustable constant (equation 5)

Subscripts:

1,3 Axial and radial grid indices

Superscripts:

! Time level (t' = t + At) or dimensional variable

s Jteration level
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Figure 1:

Stream Tube and Coordinate System.
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